DIFFERENT SURGICAL TECHNIQUES FOR GINGIVAL DEPIGMENTATION AND THEIR OUTCOMES. A LITERATURE REVIEW

Sarah I. Bin MUHARIB¹, Atheer A. ALMASOUD¹

¹General Dentist, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
Corresponding author: Sarah Bin Muharib, e-mail: saraibrahim051@gmail.com

Abstract

The aim of this review is to evaluate the outcome, post-operative pain and recurrence rate of different techniques used for gingival depigmentation, including scalpel surgery, rotary abrasion, gingival graft, laser, cryosurgery and electrosurgery. Dentistry is greatly involved in facial aesthetics and appearance. Gingival pigmentation has a great impact on patients’ smile and self-confidence. Different depigmentation techniques have been proposed in order to eliminate gingival hyperpigmentation and improve gingival color. Many reports have discussed and compared the efficacy of each technique. An electronic search was carried out in the following databases: pubmed, midline, web of science, science direct. Animal studies, patients with systemic treatment of gingival pigmentation, disease patients who consumed melanin-related drugs were excluded from the review. Diode laser has shown to have a good aesthetics and a low recurrence rate. However, further studies with longer follow-up duration are required to improve the understanding of repigmentation.

Keywords: gingival depigmentation, surgery techniques, repigmentation.

1. INTRODUCTION

Gingival tissue constitutes a major part of facial appearance and aesthetics and gingival color can affect patient’s smile, thus having a psychological impact, especially in patients with high smile line. The color of the gingiva is mainly dependent on the depth of epithelialization, degree of keratinization, vascularity and pigments within the epithelium [1]. The most common natural pigment that contributes to endogenous gingival pigmentation is melanin, which is synthesized from melanocyte. Gingival hyperpigmentation, defined as an increased intensity of gingival color through excessive melanin deposition [2], has a multifaceted etiology, including genetic factors, such as physiologic or racial pigmentation, being mostly observed in dark-skin populations [3,4]. It might be attributed to a systemic condition or disease, like: endocrine disturbance, Albright’s syndrome, malignant melanoma, Peutz-jeghers syndrome chronic pulmonary disease and Addison’s syndrome, or to a medication induced as antimalarial therapy [5-7]. Furthermore, environmental factors can lead to gingival hyperpigmentation caused by tobacco smoking, as gingival hyperpigmentation was higher in smokers than non-smokers [8]. Melanin, a brown pigment, is the most common natural pigment contributing to endogenous pigmentation of the gingiva.

Gingival depigmentation is the procedure used for the removal of hyperpigmented gingival tissue to improve the aesthetics. Different surgical techniques are used for the management of gingival hyperpigmentation, including the scalpel technique [9-14], the rotary abrasive technique [9,13,15], cryosurgery [11,15], electrosurgery [16-19], gingival graft [20-22], acellular dermal matrix allograft [19,20,23] and laser surgery [12-14,16,24]. The studies available in literature are mostly case reports and case series which compare the different techniques and their rate of re-pigmentation. The aim of this review is to compare the outcome, post-operative pain and recurrence rate of different surgical techniques used for gingival depigmentation, including scalpel surgery, rotary abrasion, cryosurgery, electrosurgery, tissue graft and laser surgery.

2. MATERIALS AND METHODS

An electronic search was carried out in the following databases: Saudi digital library, pubmed, midline, web of science, science direct. The keywords used in the search included “gingiva”, “melanin”, “pigmentation”, “hyperpigmentation”, “depigmentation”, “techniques” and “repigmentation.”
Inclusion Criteria
1. The case report, case series and clinical studies considered the following criteria:
2. A definite follow-up time
3. Obvious results of depigmentation
4. Number of subjects who experienced repigmentation.

Exclusion Criteria
1. Animal studies
2. Patients with systemic treatment of gingival pigmentation disease
3. Patients who consumed melanin-related drugs.

3. SCALPEL SURGICAL TECHNIQUE

The scalpel surgical technique, involving the surgical removal of pigmented gingival epithelium, along with the underlying connective tissue, is one of the most widely used methods for the treatment of gingival pigmentation [25]. The advantages of this technique were discussed in several studies. Kathariya et al. reported that the scalpel deepithelization technique was easy and technically friendly, giving excellent results and patient satisfaction, compared with bur abrasion and electrosurgery techniques [19]. Also, they stated that the scalpel technique still serves as a gold standard for gingival depigmentation. Moreover, Khalid et al. reported that using scalpel surgical technique results in a good patient satisfaction, excellent treatment results and absence of postsurgical complications, such as infection or scar [26]. Furthermore, Kanakamedala et al. mentioned no postsurgical pain for any of the participants, no bleeding, infection or scar, acceptable healing, good patients’ satisfaction, and excellent treatment outcomes [27].

Humangain et al. also found out no postsurgical difficulties or complications, observing a pink healthy gingiva with a normal consistency and patients’ satisfaction using scalpel surgical technique [28]. Another study conducted by Saeed R et al. found that the patients who have undergone scalpel technique reported no symptoms during or after the operation and were absolutely satisfied [29]. However, Ribeiro et al. concluded that the use of the scalpel technique presented disadvantages in terms of more discomfort and pain during the post therapy period and longer procedure time, compared to Nd:YAG laser [30].

4. CRYOSURGERY

Cryosurgery is considered one of the most widely accepted methods of gingival depigmentation, that involves destroy tissue by its freezing using cryogens [15,31]. The effect of cryogen on gingival tissue causes cryonecrosis of the epithelium, which helps eliminate gingival pigmentation [32]. The advantages of cryosurgery are that there is no need of local anesthesia, being also associated with less postoperative pain and bleeding [10]. The study conducted by Singh et al., comparing the efficacy of TFE and diode laser, showed that the cryosurgical approach by TFE was less painful, caused less discomfort and hence was more acceptable, compared to laser [33]. Moreover, Kumar et al. reported that TFE can be used safely and efficiently for depigmentation procedures [32]. They also found out that TFE can destroy gingival epithelium effectively, without causing any damage to the underlying connective tissue. Another study carried out by Kumar et al., comparing TFE and gingival abrasion [15], concluded that the use of cryogen tetrafluoroethane is easy, practical and inexpensive, as compared to gingival abrasion, due to its high rate of recurrence. Therefore, it is more acceptable for both patients and operator.

5. GINGIVAL ABRASION TECHNIQUE

Gingival abrasion is a treatment method involving denuding of the pigmented gingival epithelium by superficial abrasion using grit football-shaped or doughnut-shaped coarse diamond burs in a low-speed handpiece [15,34]. It is a simple, safe and non-aggressive method that can be easily performed and readily repeated, if necessary, to eradicate any residual repigmentation [35]. However, extra care should be taken to control the speed and pressure of the handpiece bur, for not causing unwanted abrasion or pitting of the tissue [35]. It is associated with
various drawbacks, such as increased treatment duration, technique sensitivity, post-treatment pain, placement of periodontal dressing, and high recurrence rate [15,34].

6. LASER

Recently, laser devices have been used increasingly in periodontal therapy. The most commonly used types of lasers in gingival depigmentation are carbon dioxide (CO_2, 10,600 nm) lasers, neodymium: yttrium, aluminum and garnet (Nd: YAG, 1,064 nm) and diode (980 nm) lasers, erbium-doped Er:YAG laser (2,940-nm). Laser is well known for its advantages of enhanced hemostasis, good visibility at the surgical site, reduced pain, discomfort and impaired wound healing and infection postoperatively. It is distinguished for its ease of access to interdental papilla and better aesthetic results. However, lasers can be technique-sensitive, requiring more sophisticated equipments, expensive and special training, unlike the conventional method [13,36]. A wavelength specific and well-absorbed by a certain chromophore, with which the laser light must be compatible, was stated. The diode laser has been found as the most effective type of lasers, due to its optimal wavelength well-absorbed by melanin pigments. Inappropriate use of laser may cause tissue damage, leading to gingival recession or damage of the underlying bone [34,37].

7. FREE GINGIVAL GRAFTING (FGG)

This technique involves taking of an unpigmented free gingival graft from the palate of the patient and placing it over the prepared recipient site [22]. It does not eliminate the hyperpigmented tissue, it only masks the pigmented area. It was successfully performed by Tamizi et al., no evidence of repigmentation being observed after 4.5 years. However, it has its own limitations which make it unfavorable and less used, like having two surgical sites, post-operative discomfort due to pain, technique sensitivity, and ghost-like appearance of the treated site due to hypopigmentation [22,34].

8. ACCELLULAR DERMAL MATRIX ALLOGRAFT (ADMA)

The free gingival graft has been substituted with acellular dermal matrix allograft. It is non-immunogenic and scarring is limited, because healing occurs by repopulation and revascularization rather than by granulation [20,38]. Pontes et al. and Novaes et al. reported the effectiveness of using ADMA for the elimination of gingival hyperpigmentation [20,23]. It is superior to FGG, since it has the advantage of eliminating a second surgical site, decreased post-operative complications, giving access to an unlimited amount of graft material and a predictable and satisfactory aesthetic result. However, ADMA is an expensive technique and requires high clinical expertise [19,23].

9. ELECTROSURGERY

Electrosurgery is a surgical technique using a high-frequency electrical energy to disintegrate the molecules of the melanin cells. This technique is sophisticated and necessitates more expertise, characterized by its reduced bleeding and scar tissue formation [39]. However, it was associated with significant post-operative pain and discomfort [17,19]. A pronounced limitation of the electrosurgery technique is that its prolonged or repeated application may induce heat accumulation and undesired tissue destruction [16].

10. GINGIVAL REPIGMENTATION

A major concern in the treatment of gingival hyperpigmentation is the recurrence of pigmentation or repigmentation. The exact mechanism of re-pigmentation is not fully understood and the behavior and reaction of melanocyte after the intervention is not clear yet. However, according to the migration theory, the melanocytes from the adjacent sites migrate to the depigmented sites, leading to repigmentations [40,41]. Also, it is assumed that some melanocyte might be left during surgery, later on becoming activated, thus leading to the recurrence of pigmentation [42]. Repigmentation
was mostly seen on the interdental papilla and, in some cases, on small areas in the attached gingiva or mucogingival junction, as light brown, very small spots, dots, or streaks [43,44]. Recurrence is dependent on the technique used and follow-up period, most of the studies reporting no recurrence within 6 months with different techniques. In addition, smoking is a major factor, as it was observed that smokers had a higher recurrence rate at 6 month follow-up [45,46]. In the available literature, the lowest recurrence rate was reported with laser therapy, specifically the diode laser showing the least recurrence among the laser group [37].

11. CONCLUSIONS

In order to ensure a complete success of gingival depigmentation, its potential causative or aggravating agent should be identified and eliminated, to reduce the chance of recurrence. Various depigmentation techniques are widely available, with their own advantages and disadvantages. Although a technique with low recurrence rate is preferred, like diode laser, selection of the appropriate techniques is dependent on individual preference, clinical expertise and patient affordability. Moreover, further studies with longer follow-up duration are required to improve the understanding of repigmentation.

References

DIFFERENT SURGICAL TECHNIQUES FOR GINGIVAL DEPIGMENTATION AND THEIR OUTCOMES. A LITERATURE REVIEW